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DNA-DNA interaction beyond the ground state
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The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical me-
chanics of columnar DNA assemblies. It may also play an important role in recombination of homologous
genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using
field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier sug-
gested variational approach which was developed in the context of a ground state theory of interaction of
nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-
consistent field approximation. By comparison of the Hartree approximation with an exact solution based on
the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-
tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA
molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility
of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground
state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first
order for nonhomologous DNA and weaker order for homologous sequences.
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[. INTRODUCTION the transition from 10.5 base pairs per turn in solution to 10
) _ S ~ bp in assemblies, and from to A form in dry aggregates,
DNA is a polyelectrolyte molecule; in solution it dissoci- etc.

ates leaving negative charges on phosphates and positive Fyrthermore, the analytical solution of the problem of in-
charges around the molecule in the electrolyte or readsorbegraction of long DNA with nonparallel main axes was ob-
onto the DNA surface, that compensate partially the chargeained [7,8]. One of the results was the discovered chiral
of the phosphates. Obviously, electrostatics should be impoterque which tends to twist the angles between the main axes
tant in the interaction between DNA molecules. This shouldof the molecules. The extension of this theory to assemblies
affect the structure of DNA mesophases in solution, andpf molecules of finite lengtfi9] helped to rationalize a num-
more so, the properties of DNA crystals or aggregdigs ber of observed properties of DNA chiral liquid crystals.
With appreciation of the importance of electrostatics, the so- These works triggered papers on the statistical theory of
called “polyelectrolyte model” treats a DNA molecule as amany particle DNA assembligd0-13. . _
cylinder with a net charge homogenously distributed along N Ref. [14] it was argued that the helical electrostatic
its surface[2]. Such a model appeared to be insufficient inZiPPer may be responsible forsmapshotrecognition of ho-
describing a number of properties of DNA in assemblies Mologous DNA sequences from a distance, the possibility of
Notably, Ref.[3] has shown that the electrostatic interactionWNich was conjectured in molecular genetid,1§. In-
between DNA duplexes depends dramatically on surfac eed, DNA is not an ideal staircase. Step angles are distorted

: ot p h step, and the pattern of distortions is related to the
charge patterns, thereby invalidating the “polyelectrolyte or eac ’ . > .
model” and providing a plausible alternative. Taking into ac-teXt of the sequencgi7,19. This affects the interaction be-

| - tween nonhomologous sequences. The first exploration of
count that the negative charges follow the double hel'ca[ais hypothesis was based on the theory of electrostatic in-

symmetry of 'ghe .moleculg, and assuming that the readsorbegl - fion of twotorsionally rigid DNA fragments in parallel
cations are distributed either homogeneously along the m Uxtaposition[3,4]. In Ref. [14] it was found that the inter-

lecular surface or in a certain proportion between major 0L ction energy between two DNA fragments of uncorrelated

minor grooves, one obtains helical motifs with distinct Sepa’sequences are considerably higher than two homologous se-

ration between the positive and negative charges. Adsprpuo uences, and the difference grows with the juxtaposition
into the grooves causes the strongest charge separation. T gth

such distributions on juxtaposing molecules will attract each Asi
other under a favorable azimuthal alignment of the mol-
ecules[3]. This gives rise to a concept of the “electrostatic
zipper motif for DNA aggregation(4]. A number of conse-

mple interpretation was given to this effect in the case
of rigid duplexes[14]. Two homologousduplexes have al-
most identical patterns of twist angle distortions, and they

can be azimuthally aligned in such a way that the motifs of

glgenqes hiawe been explored in t_he Icc(;ntexthof DNA assdenﬁositive and negative charges will stay in register along the
ing in columnar aggregatds$,6], including the measure whole juxtaposition length. This causes attraction. On the

decay length of short range repulsion, the laws of attracnoncontrary, twononhomologoussequences have texts which

are random relative to each other. Their step-angle distor-
tions are, therefore, unrelated. The quasihelical charge distri-
*Electronic address: a.wynveen@imperial.ac.uk butions on the molecules can be positioned in register over a
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section of a certain length, but they will lose register between
the rest of the sequences, if they are long enough. Upon
accumulation of the relative distortion, the two sides of the
zipper will not match, making the attraction much weaker or
even resulting in repulsion. The difference in the interaction
energy between homologous and nonhomologous fragments
allows the intact homologous sequences to recognize each
other, and this difference will be more pronounced the longer
the sequence.

The length over which two juxtaposing torsionally rigid
duplexes completely lose register was called libécal co-
herencedength. It is equal to.,.=h/AQ? [14], whereh is the
step rise and\() is the standard deviation of the twist angle
in one molecule. FOB-DNA h=3.4 A, AQ=0.07-0.1 rad

[19-21 so thatA.~300-700 A. On length scales larger b)

than \; the torsional mismatch accumulates as a random . 9 @e
walk. This positive difference of the interaction between P ¢y
nonhomologous and between homologous duplexes of the R

same length was called tiecognition energylt was found

to be =kgT for sequences longer than 50 bp at DNA-DNA =

interaxial separations d®=30 A [14]. At closer separations
the interaction strength increases nearly exponentially with o .
diminishingR and so does the recognition energy. FIG. 1. The charge distribution of a double hel® and the
This conclusion did not take into account the torsionalhorizomal cross section of two identical double helices in parallel
elasticity of DNA, which allows for a relaxation of the mis- juxtaposition(b). The double helix consists of two spiraling nega-
match, which may reduce the electrostatic energy, but cosﬂve phosphate strands with cations readsorbed in its minor and
ing an energy of torsional deformation. The Euler equatior{n"’IJOr grooves. The pitci of th_e helix for B-DNA is approxi-
including both the distortion of twist angle patterns and tor—rnately 34 A. The angle of the minor groove between the phosphate

sional elasticity has been derived in RgE4] but was not ~ SIrands s is about 0.8 for B-DNA. The paraliel DNA are sepa-
explored there. It has the form of a sine-Gordon equatiorﬁ)atEd by an |nt_erziX|aI spacing and the relative azimuthal angle
with frustration (caused by asymmetry between the major etween them ig=¢, - ¢,
and minor grooves in a double stranded DNgnd with a ) _
nonlocal external random field, the consequence of &hanical(QM) analog of the problem and computing the
sequence-determined pattern of twist angle distortigdisa- ~ SPectrum of the eigenstates.

pler forms of this equation appear in different physical con- Next, we extend the Hartree result to the case of nonho-
texts, viz. in the theory of Josephson junctions, nonlineafologous duplexes, thus obtaining a combined description
pendu'um dynamicsy and Commensurate_incommensurafg both the eﬂ:ecFS of tOI?SIOI’la| thermal _f!uctuatlon_s and non-
transitions, Refs[22,23.) Its solution has been investigated homology. We did not find any possibility for a similar ex-

in Refs.[24,25. It was shown that the torsional softness is {ension of the exact QM analog. However, our extended Har-
important, and that in many situations the mismatch does ndf€® _approximation, which reproduces the variational
accumulate but relaxes continuously or in an abrupt manneolution of Ref.[24] as a particular case, is good for a large
This reduces but still does not eliminate the recognition en¢lass of systems. We discuss in detail its advantages and
ergy. limitations. -

At considerable interaxial separations, the recognition en- Finally, we compare the Hartree results with finite tem-
ergy drops down téT per pair of duplexes. The same refers Perature Monte Carlo simulations of torspnally erX|pIe ho-
to the difference in the energies of columnar mesophases #fologous and nonhomologous DNAs using a specially de-
ideal helical DNA[13,24. This forces us to explore the role veloped discrete analog of the model.
of thermal fluctuations, i.e., to move the theory from the ~Most of the “field-theoretical” algebra is appendgb],
ground state leve(Euler equationtowards a calculation of Dut its key points are left in the main text. We do our best,
path integrals determining the free energy. Our goal is tdqrowever, to outline the derivation so that the reader not in-
understand the role of fluctuations and to reveal the conditerested in mathematical details will be able to follow the
tions where the conclusions of the ground state theory reideas of the work presented in the main text.
main valid. Such an exploration will be performed in this
paper for a pair of interacting DNAs in solution. We limit the Il. PATH INTEGRAL FORMULATION
analysis to parallel juxtaposition, which is sufficient for fur- FOR IDENTICAL DNA
ther applications of this pair potential to a description of
columnar aggregates.

We first consider the case of two homologdidentical For each of the two molecules, we shall assume a nega-
DNA, and solve the problem first analytically in the Hartreetive charge density of phosphates spiraling along the two
approximation and then exactly, formulating a quantum mestrands of the double helix and a positive charge density of

A. The partition function of two DNA in parallel juxtaposition
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readsorbed cations spiraling along the major and minotions due to the twisting of one DNA molecule with respect
groves(Fig. 1). We consider the patterns of adsorbed counto another; thenp will depend onz. To incorporate this ef-
terions as fixed, irreversible and unaffected by the separatiof¢ct, we must include a torsional energy tefid,24,25
between DNA or by torsional fluctuations. This is the case of Ce'2
strong chemisorption of DNA condensing counterions onto Wior = ——,
the DNA surface, seemingly typical for spermine, spermi- 4
dine, cobalt-hexamine and some other DNA condensers. whereC is the torsional elasticity modulus of the helices and
Mainly, this work will focus on the situation when DNA ¢’ =d¢/dz

molecules have ideal helical structure or they are nonideal, We are now able to write down a partition function as a
but identical(same sequence of base ppitdowever, in the path integraldefined as the continuum limit of a product of
end we will extend this to different sequences on the opposintegrals overg,, one for each point along the helices

(2.2

ing DNA. E[ 4]
The ground state DNA-DNA electrostatic interaction en- Z= f D¢ exp(— )
ergy per unit length of juxtaposition given as a function of keT
interaxial separatiorlkR and azimuthal anglep, has the form L2
[4.14 E[¢]= f dZAWinR $(2)] + Wi ¢’ (DD (2.3)

Wini(R, @) = 2o(R) — 23(RIcog ) + a(R)cog2¢h). e
2.1 We shall, for the moment, assume the length of the helices,
L, is very large and ignore all finite size corrections. In ad-

The expressions foay, a;, and a, are provided in the dition to the partition function, we may calculate the thermal
Appendix; for a detailed discussion we refer the reader taverage of any ¢-dependent” observable quantity
previous work[4,14]. What is important is that these coeffi- 1 B[]
cients fall off exponentially at largR. Simply, by minimiz- (A)= —f Do A[¢]exp<— —> (2.9
ing this energy with respect tg, we get$=0 as the pre- YA kT
ferred relative azimuthal angle a/4a,>1, and when

a,/4a,<1 this angle isp= + o= +cos(a;/4a,). The ratio B. Perturbation theory: Gaussian approximation

of a,/4a, depends orR. It is large at largeR, but small at The first step beyond the ground state is the Gaussian
smallR. Below a critical valueR. this ratio is small enough approximation which is good when the fluctuations are
for ¢ to be nonzero. small. Below we will write a criterion when this approxima-

For identical sequences or ideally helical DNA, in the tion holds.
ground stateg does not depend on the position along the In order to build the perturbation theory around the mean
helices,z. However, our aim is to include thermal fluctua- field solution, ¢(z) = ¢ we utilize the following expansion:
|

(- DMay sin(¢,) ¢ - a, sin2¢-)(2¢)™] i (- 1)"ay cod ) o? - a, cog2¢h)(2¢)?"]

oo

WindR #(2) = b, + 0(2)]= 2,
n=0

(2n+1)! =0 (2n)!
(2.5
[
and consider all terms of higher order th@fe?) as pertur-  dix B of Ref. [26]), giving us the free energy
bations.
Let us start by calculating the free energy in the Gaussian
approximation, in which we discard in E¢R.5) all terms of . LC
higher order than quadratic and glet= ¢,, the value ofp “at F=Lwin(R, o) + AN ke In O, (2.7)

. . p
T=0;" more precisely, in thground state because the elec-

trostatic interaction coefficient,, a;, anda, are also func-
tions of temperature. Here, we may write
where\ = \/

Ele(2)] = Lwin(R, ¢bo)

C
2[a; cog ) — 4a, cog2¢y) ]

L2
+f dz[(ﬁcos{d)o) - 2a, 005(2%))@(2)2 The thermal persistence lengtis defined as\,=C/(2kgT).
-L/2 2 0 is anR -independent constant which is poorly defined in
the path integral formulatiof27].
+Wt0r[g0'(2)]}. (2.6 The validity criterion for the Gaussian approximation is
N \p,<1. As we move toward®,, it will break down, as

The term linear ing vanishes. The path integral is, now, of A —« when R— R.. Therefore, generally we need a better
Gaussian form and s@ may be integrated ovecf. Appen-  approximation.
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C. Hartree approximation

The simplest self-consistent approximation is the Hartree (a)Y ®) X © X

approximation. This has proved successful in various many- X

body problems; a notable example is BCS thef#8]. We

shall present a schematic discussion of how one obtains th:

results in this approximatio(details given in Appendix B of . ] Q

Ref.[26]). In the context of our model, this approximation is (A) — © g

by no means intuitive, and in order to derive it we will have

to use diagrammatric expansion. This clarifies which contri-

butions due to thermal excitations it takes into account. This FIG. 2. The Feynman rules. Expandifg¢] [cf. Eq. (2.5)],

also gives a basis for any further refinements, in case ongache" term, forn>2, may be represented by a diagréon ver-

wants to |mprove the accuracy or extend the model teX)FOI’ |nstance the vertices (ra), (b), and (C) represent the Co-
All diagrammatic expansions will involve the “bare” cor- ©fficients that sit in front of the®, ¢*, and¢® terms, respectively,

relation function, defined a6y(z—z')=(¢(2)¢(z')), Where in E[_q,’)]. The straight line in(d) represents the “bare"_correlatlon

(---)o denotes thermal averaging over Gaussian ﬂuctuationfémCtlon Gol(z~7) (see the teyt Each Feynman graph is then con-

. ; Structed from vertices and straight lines. For each vertex positioned
[where Eq(2.6) for E[¢] is used in Eq(2.4)]. The Feynman at a pointk, there must be an integration ovgr There is also a

rules for such an expansion are shown in Fig. 2. symmetry factor which accounts for how many ways a tégraph
Our task will be first to calculate the full correlation func- i the expansion may be generated. As an example we show one

tion G(z-2')=(¢(2)¢(2')), for which the diagrammatic €x- Feynman graph ir(e). It contains one integration oves, three

pression is shown in Fig. 3. Gaussian correlation functionsGy(z-z), Go(z-2z), and
We are not able to sum up all contributions in this expan-Go(z-z) (see the te3t the coefficient that sits in front of the®

sion, and so have to simplify it. Our choice will be the Har- term, and a symmetry factor. An analytical expression@can be

tree approximation foG(z—z'). The first step is to sum up found in Appendix B of Ref[26].

the infinite series of graphs that contain o@y(0) in their

loops (correlation functions coming back on themseljves  tion for G;(0). By doing this we generate new graphs. In the

give us the result which will be calle@,(z-z') [an approxi- Hartree approximation we do this kind of iteration an infinite

mation of G(z—2') that contains only these graghor illus- number of times, and so calculaté..(0). Now, G(0)

tration, we show three of such graphs on the first line of Fig={¢(2)?) is determined self-consistently through an equation

3. Next, we replac&,(0) in the loops withG,(0) and repeat which may be obtained by setting(0)=G..(0)=G.._,(0).

the process to obtai,(0). We may see what kinds of Effectively, we are summing over a class of diagrams which

graphs are contained iG,(0) by representingG;(0) and  are usually referred to as “tadpole” grapi2g).

G,(0) by the first line of Fig. 3. However, each line in each  Introducing a new variable(;p(z)2>:)\h/2)\p, this deriva-

loop in G,(0) is replaced with the diagrammatic representa-tion yields an equation ony,

An= . (2.9
Ap Ap
2| a; cog ¢«)exg — — | — 4a, cog2¢.)exg — —
4N, Ap

Calculating the free energy, we sum up all the graphs inThis should be performed separately above and below a new
Fig. 4, as well as taking care in replacingby \. The last  critical separatiorR;,
step corresponds to replaci@y(0) by G(0). This leads to

N ¢»=0, R>R|,
F= L[ao— ay cos(@)exp(— ﬁ) +a, co42¢-)
p 3\
N c @zcos‘l[ﬁexp(— —“)] R<R.. (2.10
><exp<— —“) + } ~ksTIn @, (2.9 4a, Ahp
Ao/ BARA,

There is a striking resemblance of these results to those of
Since we have built our expansion around an arbitrary valu®ef. [24] for the average interaction energy between two
of ¢, we must minimize this result with respect # [30]. nonhomologous DNA molecules, which uses a variational
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G-G_+Q+8_+_OQ F=E+8+C8+C8)+...

O e FIG. 4. Diagrammatic expansion for the free energy. HEgds

+ the free energy calculated in the Gaussian approximation.

FIG. 3. Diagrammatic expansion for the full correlation function _ EL
G(z-7') in Hartree approximation. F=agl —kgT InEE <¢’+|5>eXp<_ )\_p (€l¢p-) ~kgT In ©.

approach, if\, is simply replaced by the helical coherence (33
length A\ [14]. This might be due just to the mere fact that The energy eigenvalues are then determined by the
both the patterns of twist angle mismatch between nonhoSchrédinger equation
mologous DNA and thermal fluctuations are random. In Sec.
IV, where we consider the case of nonhomologous DNA, we _1d%U(¢)
shall exploit this similarity to arrive at an approximation 2 d¢?
which combines both effects. .

Similar to the results of Ref24], the Hartree result gives If we take length of the helices to be very long, we may
a first order transition aR.: a discontinuity ing., the “order ~ further simplify the free energy
parameter” in this context. It appears tHRit<R., i.e., the
P TP o ECL
phase transition” in the Hartree approximation occurs at F=agl - kTN O (3.5

. . 2 B ’ .

smaller separation than in the ground state. 2\,

In this section we shall defer from plotting the Hartree _
results for the free energy angt. We leave this to the next WNereo is the ground state energy. One may also show that

section where we present the exact solution of the problerfP! @ system of infinite length the thermal average of an
with which we compare the Hartree results. observablg depending af(z) is the same as |_ts QM average.
In Appendix D of Ref.[26] we show that this principle for
thermal averagingas well as Eq(3.5)] remains valid for
1. “QM” FORMULATION FOR IDENTICAL DNA: molecules with a finite length of juxtapositionlif A>1 for
EXACT RESULTS the Gaussian approximation, ahd\,>1 for the Hartree
approximation. So, in this limit, we should interpret the
probability density|y«( ¢)|? of the ground state as the “physi-
Instead of calculating the path integral E§.3), we re-  cal” probability distribution of¢ at a given temperature.
formulate the problem into a quantum mechani€M) one Before solving Eq(3.4) let us discuss what we expect to
[31] that describes a particle with a momentypin a pe-  get. Itis useful, first, to present a schematic drawing of both
riodic potential. This not only provides an exact numericalthe potential and the probability densityig. 5. We can see
solution for free energy but also gives a framework for afrom Eg. (3.1) that A, controls the height of the potential
physical interpretation of results. barrier; as we reducea, the barrier diminishes. This in-
In dimensionless units this potential has the form creases the amount of tunneling between minima, thereby
causing the probability density to become flatter. In the ex-

V(AU P) = El¢h). (3.4

A. The quantum mechanical analogy

A2 a\? treme limit of high temperatures the probability density is the
V() = - —Scoq ¢) + ——5co92¢), (3.1)  same everywhere. In other words, at these temperatures,
Ao ano fluctuations in¢ are so large that the angular dependence of
) Wi, is effectively washed out.
where;=C/(2ay). _ _ As we increasey,, when we enter the reginR<R., the
Our first step is to rewrite the integral as potential splits into two minima, centered adgand ¢y. If

B we increase, further, we find thaty( )| will develop two
e , , peaks as seen in Fig. 5. This occurs below a separation which
Lo J f DpyDo eXp'f_N dt(py(H#"(® —HIPy(1), ¢ (VD \ye define as¥. Importantly, we expect the mean “quantum
' average'(¢) (thermal average along the whole molegute
(3.2 be zerofor all values ofa; andas.

_ Now for R>Ri, even when\/\,<1, there is an equal
where H[pyop(1)] =(py(t)*/2-V[#(t)] and L/(2\,)=1t.  probability, as we go along the molecule, #fbeing any
Here, we have performedWick rotation(z—it) into atime-  integer of 2r. This might be due to a very dilute gas of
like variablet [29]. Following Feynman’s path integral for- thermally excited solitons along the juxtaposing duplexes
mulation of quantum mechanid82] one deduces that the [25]. Whereas, folT=0 we expecip(z)=0 at largeR. Each
free energy, for the fixed end boundary conditiops-it)  soliton corresponds to a kink in the angfefrom 2mn to
=¢_ and ¢(it) = ¢,, is (cf. Appendix C of Ref[26]) 2m(n+1) or in the opposite direction, froms& to 2m(n
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increasing ay

—

\__giecreasing Ay

2V
Il W

FIG. 5. Schematic drawing showing how¢) and |y(¢)|? vary with respect toy, anday.

E'fdecreasing ay
decreasing A,

—-1). At T=0, each soliton is a nontrivial solution of the Euler (g + 5¢)2) 3.9

equation which is obtained by minimizing[ ¢,] with re- (6¢) = o exp(— >
spect to ¢p; each havingAE~1/N more energy than the
trivial solution. The probability of finding at least one soliton wherec, is the normalization factor. Then using the formula

of “length” \ can be estimated as given in Eq.(3.5) it is easy to recover Eq2.7).
What is the place of the Hartree approximation in the
P~ exp(— E) (3.6 “QM” reformulation? It is equivalent to a variational prin-
s kgT/ " ' ciple for the free energy where now E@.8) is its trial

function andw a variational parameter. Nod= ¢+ ¢, and

At least for infinitely long molecules there are always some¢x is treated as a variational parameter as well. By comput-
solitons present. However, there are too few solitons aing (£|H|E) and settingw=X\,/X it is not hard to recover the
M \,<1 to give any substantial contribution to the free en-Hartree result2.9).
ergy. In one detail, however, the Hartree and Gaussian approxi-

WhenR<R/, there is another type of soliton correspond- mations are incorregteven when/\,<1); namely, in the
ing to a twist in the angle from ¢ to ¢, or in the opposite  value of (¢). In the Gaussian approximation we find that
direc_tion. Fo_r)\/}\p< 1, we expect a small thermally excited (dy=%¢y and in the Hartree approximatiof)=+ e,
density of this type of solitons, and this cau¢esto bezero \yhareas in fact it should be zero. This is due to hBtuss-
for all separations. A rough estimate of the density of solitongay and Hartree approximations not containing solitdss).
should be the amount of QM tunnelling through potentialtg remedy this, we should treat the ground state wave func-

barriers, Eq(3.1). tion as a superposition of Gaussian wave functions, each
centered about minima in the potenti&lly) when\/\,<1:
B. Limiting cases . Ny2
For our confidence, let us check the limiting cases. We (¢) = lim % > exp(- w(¢p-2m)?»), R>R.,

first considem/\,<1, where we must recover the Gaussian N— VNpn=-N,/2
result. In the “QM” picture, this regime corresponds to a (3.9
large magnitude of the potential. Here, we expg@p) to be
localized; forR>R., around¢,=0, and forR<R. around Ny2
t¢o. Therefore, we should Taylor-expand ifhp= ¢+ ¢ o Co _ B RY
around these respective values. At small values$g@f one W) = hl,'inx \;’ﬂn:% P [exp(= (¢ =270 = o))
readily obtains the Schrddinger equation for a simple har- P 5
monic oscillator(A=1) +expi- w(¢p-2mn+ ¢p))], R<R.

12U 6¢)  wPod’~ . If the degree of overlap between the Gaussian wave func-

-5 (502 - W(6P) =EY(6). (8.7)  tionsis small, i.e., the number of solitons is negligible which

is true when\/\,<1 for R>R. and N/ (\p¢g) <1 for

- R<R., then by using Eq(3.5 we are able to show again
Here w?=(\3/\5)COS go—(4a\/a\g)cos 2p, and =&  that the Gaussian resuR.7), is essentially correct. By simi-
+()\'2)/)\§)cos(q50)—(al)\f,/azxg)cos@d)o). The ground state lar reasoning, we may show that the Hartree re€uB), is
energy is of cours€y=w/2 and the wave function takes the recovered by applying the variational principle to QM for-
form mulation.
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Now, for the wave functions given in E¢3.9) we find
(¢y=0 for all R, in accordance with our previous discussion.
Thereby, the analysis of the limiting cases is mathematically
consistent with the QM picture.

@.(rad)

C. Exact solution: Comparison with approximate results

P (ad)

0.4
To solve Eq.(3.4) exactly for the ground state, utilizing

that the ground state wave function is periodic, we write 021

0.0

W P) =2 A, expl—ing). (3.10 % 2 P

R(R)

Equation(3.4) then reduces to an infinite system of algebraic FIG. 7. Approximate and exact solutions for the azimuthal angle
equations given by as a function of separatiog- (dotted ling and ¢ax (Solid line) are
shown for the Hartree and QM formulations, respectively. Whereas
n2 A2 al)\z the Hartree formulation predicts a first order transition in the opti-
E =& |An— Z\p_z[An—l + A+ E\%[An—z +An2]=0. mum phase angle, the most probable phase angle from the QM
0 20 formulation continuously decreases to zerdramcreases.
(3.11

. > )
We then solve Eq.3.11) numerically for&, andA, subject to In F'_g- 8 we compgréd;. ), the measure of fluc.tuau.ons as
a function of separation in the Hartree approximation with

normalization of the wave function. The relevant quantities i . )
resulting from this calculation are shown in Figs. 6—8. the exact calculation. Here, again, there is good agreement

In Fig. 6 the free energy—the exact calculation and the?Way fromR.. NearR., as expected, the Hartree approxima-
Hartree approximation—are compared. The general trend i€o" greaksldown. However, the exact calculation has a cusp
that it increases with temperature. We see that agreemelfft (¢ atR:. So there might bsome kind of phase transi-
between the two is quite good, above and beRiwfor the  tion going on, albeit not a conventional one.
temperatures plotted. There is, however, a small discrepancy
nearRY, where the Hartree approximation is less accurate.

In Fig. 7 we comparep. R! calculated in the Hartree
approximation withe,,,,, the angle of the maximum prob-
ability density in one period, an&’ the critical interaxial Now let us consider two DNA molecules with different
separation from the exact solution. Again, we find that agreepase pair sequences. Following REf4] we write the tor-

exact calculation gives no discontinuityRit, unlike the Har-

IV. EXTENSION OF THE HARTREE APPROXIMATION
FOR NONHOMOLOGOUS PAIRS

tree approximation. C(dp 80(2))?
PP Wior(¢,00) = —(— - . (4.1)
4\ dz h
0.00+ 80 (2)=04(20-Q,(2) is a random field that corresponds to
0,02 T=300K the preferred value of the derivative gf when there is no
e interaction. Heref);(z) and Q,(z) correspond to the pre-
o 0041 ferred values of the derivatives @f; and ¢,, respectively.
2 -0.06 4
5 0.4- -
a-0.08
W
-0.104 Ground State Sa
(T=0K) 5 A
-0.124— T r T ] A ~x
22 24 26 28 30 ‘\L\. 2
R(A) b be
s s
FIG. 6. Free energy per base pair for the Hart@etted ling v v
and QM(solid line) formulations aff =300 K as a function of sepa-
ration,R. The electrostatic coefficients, which vary wihused for
this plot are for helices with 90% counterion neutralization and a 00 22 24 2 28 30
30%/70% distribution of these ions between the minor and major RA)

grooveg14]. The torsional modulus is given the experimental value

of C=3.0x 107 erg cm.(These values will be used throughoutthe ~ FIG. 8. Mean square amplitude of phase angle fluctuations for
papen As we see, the Hartree value for the free energy deviateshe Hartree casédotted ling and for the QM formulation(solid

from the one calculated within the QM formulation only near the line). The Hartree case shows a first order transition whereas there
transition(around 24—25 A for both temperatuyes is no discontinuity for the QM formulation.
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Both 4(2) and,(z) are sequence dependent. Therefore, a At this point, it is worth mentioning why we have been
particular nonzero value ofQ(z) corresponds to different unable to find a QM formulation for nonhomologous pairs.
sequences along each double helix. For a detailed discussiddhen one tries to reformulate the problem as a path integral
and a derivation of Eq(4.1), the reader is referred to Ref. over¢y[{1] (as well as ovep), the integrand is not of closed
[24]. As in Ref.[24], we assume that the statistical distribu- form and is inherently nonlocal. This makes it impossible to
tion of 80 (2) is Gaussian withdQ(z)8Q(z')=2A0%hs(z  write this path integral in the form of E@3.2); therefore no
-Z') (throughout, we use a bar to denote ensemble averagin@M” approach can be formulated whex() # 0.
S0 as not to confuse with thermal averaging A way of calculatingF is to introduce field replicas, usu-
Our aim will be to calculate the ensemble-averaged freally employed in the field theoretical literature when han-

energyF. The main problem is how to include a random field dling a random field34,35. But, it is easier to employ the
in Eq. (2.3. Indeed, ¢ will now depend on bottz and  following approximation instead. The key step will be to
50(2). In the Gaussian approximation we may take replacewy,, sin ¢, sin 24, cos¢., and cos 2. by their

= o[ Q1] where [ Q)] satisfies the saddle point equatidsf] ~ ensemble averages, so that

¢y 1 4a, daQ
dzzo )\zsm(qﬁo)(l——coswo)) N dr (4.2 F~—kBTInfD¢exp< —%(”;"T—“ﬂ> (4.3

the solutions of which are discussed in Ref24,25. To
where
calculate the free energy in both the Gaussian approximation
and perturbation theory without further approximation is a L2
difficult task. Essentially, one has to solve this equation andEappm){(p] f dZWappro R, @) + Wior (¢ + L[ 80], 50))
then calculate the correlation function for Gaussian approxi-
mations around this mean field, before even being able to
perform perturbation theory. and

(- )"ay sin(¢-)¢*™ - &, sin(2¢.)(2¢)*™1] E( 1)"a, cod¢)¢*" - @, cog2¢:) )(2cp)2“]

WapproKRr ¢(2) = 2

2n+1)! =0 (2n)!
[
One can see that,, (R, ¢(2)) is simply the form given for — — Ah _
Wi in Eq.(2.5), but with all the quantities that depend ¢n F=L|ag—a; cod¢:)exp — o) T cog2¢)
replaced by their ensemble averages; varying them so as to S
minimize F. Now, things are a lot easier if the helices are ><exp<— M) + c } ~ksT In O, (4.6)
assumed to be very long, as these ensemble averages will not Ns/ 8Nphs

depend ore. We can now use the Hartree approximation ©\yhere we have introduced an effective coherence length

obtain
1 1 1
— Mn —_— An ~n + o 4.7
F =L\ ay—a; coq ¢«)ex . +a, coq2¢+)ex L s N Ap
P P with A.=h/AQ?, the helical coherence length in the ground
cl 1 de. o0 \? state[14] discussed in the Introduction. This should be valid
*2 m e T hH kgT In © (44 when\y/\s<1. Then minimizing Eq(4.6) with respect to

A, and ¢« we recover Eqs(2.8) and (2.10), but with X,
All that is left is to compute the averages, using the sameeplaced by\.
type of trial function as given in Ref24]

| | V. SPIN-SPRING MODEL: MONTE CARLO SIMULATIONS
X=X

)- (4.5 In order to test the results of the Hartree approximation
for both homologous and nohomologous pairs we have de-
An important difference is that the trial function is fgs, ~ veloped a discrete computational model. Performing Monte
not for ¢, and A, will be chosen to minimizeE at finite Carlo simulations for this model we have been able to deter-
o h mine over what range of parameters we may use Ey6)
temperature, instead & at zero temperature. Then using the ang (4.7). These simulations also provide an additional test
results of Ref[24] we are able to recast in the form of the QM results.

¢ (2) = ¢——f dZ =

h
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in the preferential twist angles at sitdbetween duplexes 1
: / R : and 2.
. If . ¢21
I B. Finite temperature Monte Carlo simulations
344

The ground state energy can then be determined by mini-
mizing Eg. (5.1). To do this, we employed a simple finite
temperature Monte Carlo routine in which a spin is randomly
chosen and perturbed by a small angle. The perturbation is
dynamically altered during the routine so that half of the
Monte Carlo moves are accepted.

o 5 The inclusion of temperature into the model is thus a
: : simple task. However, we were required to modify our origi-
nal Metropolis[36] algorithm in order to build up a canoni-
FIG. 9. “Discrete spin model” of two interacting DNA duplexes. Cal distribution of the spin configurations. For a given Monte
Each spin represents an individual base pair which is coupled to itearlo move, the change in the electrostatic energy tends to
neighboring base pairs along the same duplex by a spring with B dominated by the change in the torsional energy, thus
torsional elasticity modulu€. Each spin also interacts electrostati- biasing the sampling. In our modified algorithm, we would

cally with the spin adjacent to it in the other duplex. first address only the change in the electrostatic energy for a
given move to determine if it was accepted. Afterwards, the
A. Discrete model combined change in the torsional and electrostatic energy,

| . 5 ical simulati ied OE, for the move was compared against the Boltzmann factor
tr: p][_e\gcms work éﬂ tnt:menca .S|mufa}t|?ns V\{gre E)?\Ir,:ed exp(—oE/kgT) in the standard Metropolis fashion. This sam-
outto find the ground state energies ot interacting W ling yielded the correct canonical distribution of the con-

plexes a_nd to dlsc_over how nonlinear ef_fects opserved_ ' igurations at a given temperature so that the thermal average
their torsional readjustment influence the interaction. To in-

model of interacting base pairs. This discrete model yleId§e
results for the ground states identical to those obtained in th
continuum model used in Ref25].

In the discrete model each duplex is treated as a series fn

disks where the spin variable corresponds to the azimuth f interacting nonhomologous pairs, in which we averaged

orientation ofa d'sfk.at site Each disk Or spin represents an over a number of randomly generated setsstf. Many
individual base pair in the duplex and is coupled to its neigh-

boring disks in th me DNA duplex by torsional Sprin simulations using different numbers of base pairs were car-
oring disks in the same dupex Dy torsional Springs oy gyt to take into consideration end effects, i.e., we as-
with the experimentally determined force const&ht For

perfectly rigid helices, the phase angle difference betweeﬁumed the ends of the DNA to be free to twist rather than
neighboring diskSey - yi_a, is determined by the prefer- eing fixed. We found that as long as fifty base pairs or more

; . , were used, the energy per base pair was independent of the
ential twist angle{}y, between the base pairs. FBDNA  jangth of the duplexes. For both homologous and nonho-
this preferential twist angle has an average value of 34 Wltrinnmogous pairs, we also averaged over many different initial

a sequence-dependent variatia@l=4°-6° [19-21. Any  gpin configurations as to remove any bias from our sampling.
deviation of the phase angle difference from the correspond-" 14 compare the calculated energy from the previous sec-
ing preferential twist angle difference yields an increase ijong with that found from the numerical simulations, we
the torsional energy of the duplex. Each disk also interact§ hiract the energy determined at each interaxial separation
electrostatlcally'wnh the dIS!( adjacent to it in the secondby the energy found at a large separation to eliminate the ill
DNA duplex. This electrostatic interaction between them deafined® term. As shown in Fig. 10, the results of these
pends on their relative azimuthal anglg= ¢~ ¢», and the  gimyjations are in excellent agreement with the free energy
interaxial separationR. This configuration is sketched i tq,nq from the Hartree calculations. Along with the criteria
Fig. 9. outlined in Appendix D of Ref[26], this implies that the

The total energy is then simply a discretized form of EQS.jyriree and QM formulations are good descriptions of the
(2.2) and(4.1) interaction.

m to thermally equilibratéat least 16 MC sweep$ and
fhen begin averaging over subsequent Monte Carlo steps.
We used this model to find the thermal average of the
ergy of interacting homologous DNA, whef€ =0, and

N
E=h| > [ag-a; cod¢) +a, cod2¢)] VI. CONCLUSION
=
I In all the problems of biological importance, DNA oper-

N
C 9 ates at physiological temperatures and hence it is important
* R% [(di = ¢i-) = 0] (5 4o understand how thermal fluctuations will affect the DNA-
DNA interaction. This article provides this understanding.
whereh is the helical rise per base pdi=3.4 A), N is the We have extended the theory of electrostatic interactions

total number of base paifglisks, and 8(); is the difference between DNA from the ground state to account for thermal
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0.02+

\ work is limited to strong chemisorption of counterions, not
0.004 \.\ untypical for many DNA condensers.
002t o\ The parameters of the effective Hamiltoni@s) are
oy I RUAN i temperature dependent. Indeed, the electrostatic coefficients
%‘” -0.049 % - /D describing the pair interactiony, a;, anda, depend on tem-
2 0064 perature through the dielectric constant of the solvent and the
s Debye screening length, whereas the torsional elasticity
L5008 modulus decreases dramatically approaching the DNA melt-
-0.10 ing point. The degrees of freedom that control temperature
042 dependence of these parameters are much faster than DNA

T T T T . torsional fluctuations, so that we are not obliged to consider
22 24 a Azs 2 %0 both on the same footing. But in the calculation of thermo-
* dynamic properties of DNA assemblies this additional and

FIG. 10. The free energy per base pair for the ground state ofdually important source of temperature dependence must be
homologous sequencésolid line) and for the Hartree calculation at Parametrically taken into account. And with these findings
T=300 K for homologous(dotted ling and nonhomologous se- C€oncerning the pair interaction it will be possible to start
quences(dot-dashed line Numerical results of the discrete spin investigating the statistical thermodynamics of columnar as-
model for homologous sequencesTat300 K are shown as filled Semblies. This will be a rich object for theoretical studies due
circles. For nonhomologous sequendepen squargs the data  t0 the unique properties of the pair potential. What is also
points were found by averaging over many different realizations ofinteresting is that by the above discussed spin-analogies, the
the random field5(). The error bargnot shown for clarity’s sakeof ~ problem could be mapped onto unexplored models of exotic
the numerical simulations are found from averaging over many ini-magnetic systems, an area of possible theoretical interest.
tial configurations for the homologous case and averaging over dif-
ferent realizations of the random field for nonhomologous cases.

fluctuations. We have developed three levels of description: ACKNOWLEDGMENTS
path integral formulations on the level of Gaussian and Har-
tree approximations, a quasi “QM” formulation giving us an

exact solution for the interaction of homologous DGV, Numerous discussions with Dr. S. Leikin are gratefully

and finite temperature Monte Carlo simulations of a Spin_acknowledged. This work was made possible via the Royal

spring model which permitted verification of the exact andEgCieRté \gOIfSOE RZSSflrggoI:;A(a/r(i)thrant to AAK. and the
approximate solutions. S rant No. S 8/01.

We have shown that a heuristic, ground state variational
solution of Ref. 24 is reproduced by the Hartree self-
consistent field approximation, where temperature plays the AppeENDIX: THE ELECTROSTATIC COEEFICIENTS
role of nonhomology. Subsequently, we have extended our
approximations to embrace both the nonhomology and ther-
mal effects in the interaction.

The Hartree approximation predicts a first order transition
close to the ground state frustration point instead of a weaker
transition given by the exact solution. This discrepancy is 87202 ) (1 - P)K,(kR)
less noticeable for nonhomologous DNA. The Hartree ap- = > >
proximation thus seems to be a reasonable tool for the de- & K Ka(kr)]
scription of torsionally flexible DNA. ° [f(n 9)]2|:[Kn j(KnR)]2|j,(Knr):|

- : ~ Al
o eapes el | Rl

The coefficients derived in Ref3] have the form

There are also two “practical” lessons from this study.
First, as shown in Fig. 6, thermally induced torsional fluc- nj=—»  Kp
tuations increase the energy of interaction of DNA duplexes
relative to the ground state by roughly Ok@B per base pair
(~4kgT per persistence lengthbut they do not remove the
attraction minimum. Second, recognition between homolo- 167202 [f(n,0)]> Ko(kyR)
gous and nonhomologous duplexes via the difference in elec- 8n=1,2= e 2 K (kD2 (A2)
trostatic attraction[14] remains possible. Figure 10 gives . men
typical energy differences from KkgT to 6kgT per persis-
tence length, which could cause recognition.

It should be recalled that in this work the counter ionswhere
have been assumed to be irreversibly adsorbed and immobile
on the DNA surface. There were a number of theoretical
works exploring the opposite limiting cases when all the 2020222 ~
counterions are floating around DNA or rearranging on the (&) =€ WIHTH6+ (= 170 - (1 - Tsf)codndsy)]
surfaces subject to DNA-DNA interactiof38,39. Thus our (A3)
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and of the phosphategi is the fraction of phosphate charge neu-
tralized by bound counterion§. are the fractions of counte-
rions bound in the minor groovd,), the major groovef,),
and on the phosphate strands) so thatf,+f,+f;=1. T;SS(
~0.4q for B-DNA) is the azimuthal half-width of the minor
groove.w (=5 A) is the width of the charge density distri-
bution across each phosphate strand or groevies80) is

2 2
kn=\/ K2+ n2|:F7T] . (A4)

[,(X), Kn(x), 1;,(x), andK/(x) are the modified Bessel func-
tions and their derivatives, respectiveB, again, is the in-

teraxial spacing between two parallel helices ani$ the

radius of the cylindrical surface formed by the centers of thehe dielectric constant of water. And, finally;* (=7 A in
phosphatesr (=16.8 uC/cn?) is the surface charge density Physiological solutionis the Debye screening length.
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