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The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical me-
chanics of columnar DNA assemblies. It may also play an important role in recombination of homologous
genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using
field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier sug-
gested variational approach which was developed in the context of a ground state theory of interaction of
nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-
consistent field approximation. By comparison of the Hartree approximation with an exact solution based on
the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-
tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA
molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility
of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground
state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first
order for nonhomologous DNA and weaker order for homologous sequences.

DOI: 10.1103/PhysRevE.70.051913 PACS number(s): 87.15.Kg, 87.15.Ya

I. INTRODUCTION

DNA is a polyelectrolyte molecule; in solution it dissoci-
ates leaving negative charges on phosphates and positive
charges around the molecule in the electrolyte or readsorbed
onto the DNA surface, that compensate partially the charge
of the phosphates. Obviously, electrostatics should be impor-
tant in the interaction between DNA molecules. This should
affect the structure of DNA mesophases in solution, and,
more so, the properties of DNA crystals or aggregates[1].
With appreciation of the importance of electrostatics, the so-
called “polyelectrolyte model” treats a DNA molecule as a
cylinder with a net charge homogenously distributed along
its surface[2]. Such a model appeared to be insufficient in
describing a number of properties of DNA in assemblies.
Notably, Ref.[3] has shown that the electrostatic interaction
between DNA duplexes depends dramatically on surface
charge patterns, thereby invalidating the “polyelectrolyte
model” and providing a plausible alternative. Taking into ac-
count that the negative charges follow the double helical
symmetry of the molecule, and assuming that the readsorbed
cations are distributed either homogeneously along the mo-
lecular surface or in a certain proportion between major or
minor grooves, one obtains helical motifs with distinct sepa-
ration between the positive and negative charges. Adsorption
into the grooves causes the strongest charge separation. Two
such distributions on juxtaposing molecules will attract each
other under a favorable azimuthal alignment of the mol-
ecules[3]. This gives rise to a concept of the “electrostatic
zipper motif for DNA aggregation”[4]. A number of conse-
quences have been explored in the context of DNA assem-
bling in columnar aggregates[5,6], including the measured
decay length of short range repulsion, the laws of attraction,

the transition from 10.5 base pairs per turn in solution to 10
bp in assemblies, and fromB to A form in dry aggregates,
etc.

Furthermore, the analytical solution of the problem of in-
teraction of long DNA with nonparallel main axes was ob-
tained [7,8]. One of the results was the discovered chiral
torque which tends to twist the angles between the main axes
of the molecules. The extension of this theory to assemblies
of molecules of finite length[9] helped to rationalize a num-
ber of observed properties of DNA chiral liquid crystals.

These works triggered papers on the statistical theory of
many particle DNA assemblies[10–13].

In Ref. [14] it was argued that the helical electrostatic
zipper may be responsible for asnapshotrecognition of ho-
mologous DNA sequences from a distance, the possibility of
which was conjectured in molecular genetics[15,16]. In-
deed, DNA is not an ideal staircase. Step angles are distorted
for each step, and the pattern of distortions is related to the
text of the sequence[17,18]. This affects the interaction be-
tween nonhomologous sequences. The first exploration of
this hypothesis was based on the theory of electrostatic in-
teraction of twotorsionally rigid DNA fragments in parallel
juxtaposition[3,4]. In Ref. [14] it was found that the inter-
action energy between two DNA fragments of uncorrelated
sequences are considerably higher than two homologous se-
quences, and the difference grows with the juxtaposition
length.

A simple interpretation was given to this effect in the case
of rigid duplexes[14]. Two homologousduplexes have al-
most identical patterns of twist angle distortions, and they
can be azimuthally aligned in such a way that the motifs of
positive and negative charges will stay in register along the
whole juxtaposition length. This causes attraction. On the
contrary, twononhomologoussequences have texts which
are random relative to each other. Their step-angle distor-
tions are, therefore, unrelated. The quasihelical charge distri-
butions on the molecules can be positioned in register over a*Electronic address: a.wynveen@imperial.ac.uk
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section of a certain length, but they will lose register between
the rest of the sequences, if they are long enough. Upon
accumulation of the relative distortion, the two sides of the
zipper will not match, making the attraction much weaker or
even resulting in repulsion. The difference in the interaction
energy between homologous and nonhomologous fragments
allows the intact homologous sequences to recognize each
other, and this difference will be more pronounced the longer
the sequence.

The length over which two juxtaposing torsionally rigid
duplexes completely lose register was called thehelical co-
herencelength. It is equal tolc=h/DV2 [14], whereh is the
step rise andDV is the standard deviation of the twist angle
in one molecule. ForB-DNA h<3.4 Å, DV<0.07–0.1 rad
[19–21] so that lc<300–700 Å. On length scales larger
than lc the torsional mismatch accumulates as a random
walk. This positive difference of the interaction between
nonhomologous and between homologous duplexes of the
same length was called therecognition energy. It was found
to be *kBT for sequences longer than 50 bp at DNA-DNA
interaxial separations ofR=30 Å [14]. At closer separations
the interaction strength increases nearly exponentially with
diminishingR and so does the recognition energy.

This conclusion did not take into account the torsional
elasticity of DNA, which allows for a relaxation of the mis-
match, which may reduce the electrostatic energy, but cost-
ing an energy of torsional deformation. The Euler equation
including both the distortion of twist angle patterns and tor-
sional elasticity has been derived in Ref.[14] but was not
explored there. It has the form of a sine-Gordon equation
with frustration (caused by asymmetry between the major
and minor grooves in a double stranded DNA) and with a
nonlocal external random field, the consequence of a
sequence-determined pattern of twist angle distortions.(Sim-
pler forms of this equation appear in different physical con-
texts, viz. in the theory of Josephson junctions, nonlinear
pendulum dynamics, and commensurate-incommensurate
transitions, Refs.[22,23].) Its solution has been investigated
in Refs. [24,25]. It was shown that the torsional softness is
important, and that in many situations the mismatch does not
accumulate but relaxes continuously or in an abrupt manner.
This reduces but still does not eliminate the recognition en-
ergy.

At considerable interaxial separations, the recognition en-
ergy drops down tokBT per pair of duplexes. The same refers
to the difference in the energies of columnar mesophases of
ideal helical DNA[13,24]. This forces us to explore the role
of thermal fluctuations, i.e., to move the theory from the
ground state level(Euler equation) towards a calculation of
path integrals determining the free energy. Our goal is to
understand the role of fluctuations and to reveal the condi-
tions where the conclusions of the ground state theory re-
main valid. Such an exploration will be performed in this
paper for a pair of interacting DNAs in solution. We limit the
analysis to parallel juxtaposition, which is sufficient for fur-
ther applications of this pair potential to a description of
columnar aggregates.

We first consider the case of two homologous(identical)
DNA, and solve the problem first analytically in the Hartree
approximation and then exactly, formulating a quantum me-

chanical (QM) analog of the problem and computing the
spectrum of the eigenstates.

Next, we extend the Hartree result to the case of nonho-
mologous duplexes, thus obtaining a combined description
of both the effects of torsional thermal fluctuations and non-
homology. We did not find any possibility for a similar ex-
tension of the exact QM analog. However, our extended Har-
tree approximation, which reproduces the variational
solution of Ref.[24] as a particular case, is good for a large
class of systems. We discuss in detail its advantages and
limitations.

Finally, we compare the Hartree results with finite tem-
perature Monte Carlo simulations of torsionally flexible ho-
mologous and nonhomologous DNAs using a specially de-
veloped discrete analog of the model.

Most of the “field-theoretical” algebra is appended[26],
but its key points are left in the main text. We do our best,
however, to outline the derivation so that the reader not in-
terested in mathematical details will be able to follow the
ideas of the work presented in the main text.

II. PATH INTEGRAL FORMULATION
FOR IDENTICAL DNA

A. The partition function of two DNA in parallel juxtaposition

For each of the two molecules, we shall assume a nega-
tive charge density of phosphates spiraling along the two
strands of the double helix and a positive charge density of

FIG. 1. The charge distribution of a double helix(a) and the
horizontal cross section of two identical double helices in parallel
juxtaposition(b). The double helix consists of two spiraling nega-
tive phosphate strands with cations readsorbed in its minor and
major grooves. The pitchH of the helix for B-DNA is approxi-
mately 34 Å. The angle of the minor groove between the phosphate
strands 2f̃s is about 0.8p for B-DNA. The parallel DNA are sepa-
rated by an interaxial spacingR and the relative azimuthal angle
between them isf=f1−f2.
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readsorbed cations spiraling along the major and minor
groves(Fig. 1). We consider the patterns of adsorbed coun-
terions as fixed, irreversible and unaffected by the separation
between DNA or by torsional fluctuations. This is the case of
strong chemisorption of DNA condensing counterions onto
the DNA surface, seemingly typical for spermine, spermi-
dine, cobalt-hexamine and some other DNA condensers.

Mainly, this work will focus on the situation when DNA
molecules have ideal helical structure or they are nonideal,
but identical(same sequence of base pairs). However, in the
end we will extend this to different sequences on the oppos-
ing DNA.

The ground state DNA-DNA electrostatic interaction en-
ergy per unit length of juxtaposition given as a function of
interaxial separation,R and azimuthal angle,f, has the form
[4,14]

wintsR,fd < a0sRd − a1sRdcossfd + a2sRdcoss2fd.

s2.1d

The expressions fora0, a1, and a2 are provided in the
Appendix; for a detailed discussion we refer the reader to
previous work[4,14]. What is important is that these coeffi-
cients fall off exponentially at largeR. Simply, by minimiz-
ing this energy with respect tof, we getf=0 as the pre-
ferred relative azimuthal angle ata1/4a2.1, and when
a1/4a2,1 this angle isf; ±f0= ±cos−1sa1/4a2d. The ratio
of a1/4a2 depends onR. It is large at largeR, but small at
small R. Below a critical valueR* this ratio is small enough
for f to be nonzero.

For identical sequences or ideally helical DNA, in the
ground state,f does not depend on the position along the
helices,z. However, our aim is to include thermal fluctua-

tions due to the twisting of one DNA molecule with respect
to another; thenf will depend onz. To incorporate this ef-
fect, we must include a torsional energy term[14,24,25]

wtor =
Cf82

4
, s2.2d

whereC is the torsional elasticity modulus of the helices and
f8=df /dz.

We are now able to write down a partition function as a
path integral(defined as the continuum limit of a product of
integrals overfz, one for each pointz along the helices),

Z =E Df expS−
Effg
kBT

D ,

Effg =E
−L/2

L/2

dz„wintfR,fszdg + wtorff8szdg…. s2.3d

We shall, for the moment, assume the length of the helices,
L, is very large and ignore all finite size corrections. In ad-
dition to the partition function, we may calculate the thermal
average of any “f-dependent” observable quantity

kAl =
1

Z
E Df AffgexpS−

Effg
kBT

D . s2.4d

B. Perturbation theory: Gaussian approximation

The first step beyond the ground state is the Gaussian
approximation which is good when the fluctuations are
small. Below we will write a criterion when this approxima-
tion holds.

In order to build the perturbation theory around the mean
field solution,fszd=f* we utilize the following expansion:

wintfR,fszd = f
*

+ wszdg = o
n=0

` s− 1dnfa1 sinsf
*
dw2n+1 − a2 sins2f*ds2wd2n+1g

s2n + 1d!
−o

n=0

`
s− 1dnfa1 cossf*dw2n − a2 coss2f*ds2wd2ng

s2nd!
,

s2.5d

and consider all terms of higher order thanOsw2d as pertur-
bations.

Let us start by calculating the free energy in the Gaussian
approximation, in which we discard in Eq.(2.5) all terms of
higher order than quadratic and setf* =f0, the value off “at
T=0;” more precisely, in theground state, because the elec-
trostatic interaction coefficientsa0, a1, anda2 are also func-
tions of temperature. Here, we may write

Efwszdg = LwintsR,f0d

+E
−L/2

L/2

dzFSa1

2
cossf0d − 2a2 coss2f0dDwszd2

+ wtorfw8szdgG . s2.6d

The term linear inw vanishes. The path integral is, now, of
Gaussian form and sow may be integrated over(cf. Appen-

dix B of Ref. [26]), giving us the free energy

F = LwintsR,f0d +
LC

4llp
− kBT ln Q, s2.7d

wherel =Î C

2fa1 cossf0d − 4a2 coss2f0dg
.

The thermal persistence lengthis defined aslp=C/ s2kBTd.
Q is anR -independent constant which is poorly defined in
the path integral formulation[27].

The validity criterion for the Gaussian approximation is
l /lp!1. As we move towardsR

*
, it will break down, as

l→` when R→R* . Therefore, generally we need a better
approximation.
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C. Hartree approximation

The simplest self-consistent approximation is the Hartree
approximation. This has proved successful in various many-
body problems; a notable example is BCS theory[28]. We
shall present a schematic discussion of how one obtains the
results in this approximation(details given in Appendix B of
Ref. [26]). In the context of our model, this approximation is
by no means intuitive, and in order to derive it we will have
to use diagrammatric expansion. This clarifies which contri-
butions due to thermal excitations it takes into account. This
also gives a basis for any further refinements, in case one
wants to improve the accuracy or extend the model.

All diagrammatic expansions will involve the “bare” cor-
relation function, defined asG0sz−z8d=kwszdwsz8dl0 where
k¯l0 denotes thermal averaging over Gaussian fluctuations
[where Eq.(2.6) for Effg is used in Eq.(2.4)]. The Feynman
rules for such an expansion are shown in Fig. 2.

Our task will be first to calculate the full correlation func-
tion Gsz−z8d=kwszdwsz8dl, for which the diagrammatic ex-
pression is shown in Fig. 3.

We are not able to sum up all contributions in this expan-
sion, and so have to simplify it. Our choice will be the Har-
tree approximation forGsz−z8d. The first step is to sum up
the infinite series of graphs that contain onlyG0s0d in their
loops (correlation functions coming back on themselves) to
give us the result which will be calledG1sz−z8d [an approxi-
mation ofGsz−z8d that contains only these graphs]; for illus-
tration, we show three of such graphs on the first line of Fig.
3. Next, we replaceG0s0d in the loops withG1s0d and repeat
the process to obtainG2s0d. We may see what kinds of
graphs are contained inG2s0d by representingG1s0d and
G2s0d by the first line of Fig. 3. However, each line in each
loop in G2s0d is replaced with the diagrammatic representa-

tion for G1s0d. By doing this we generate new graphs. In the
Hartree approximation we do this kind of iteration an infinite
number of times, and so calculateG`s0d. Now, Gs0d
=kwszd2l is determined self-consistently through an equation
which may be obtained by settingGs0d=G`s0d=G`−1s0d.
Effectively, we are summing over a class of diagrams which
are usually referred to as “tadpole” graphs[29].

Introducing a new variable,kwszd2l=lh/2lp, this deriva-
tion yields an equation onlh,

lh =!
C

23a1 cossf*dexp1−
lh

4lp
2 − 4a2 coss2f*dexp1−

lh

lp
24

. s2.8d

Calculating the free energy, we sum up all the graphs in
Fig. 4, as well as taking care in replacingl by lh. The last
step corresponds to replacingG0s0d by Gs0d. This leads to

F = LFa0 − a1 cossf*dexpS−
lh

4lp
D + a2 coss2f*d

3expS−
lh

lp
D +

C

8lhlp
G − kBT ln Q. s2.9d

Since we have built our expansion around an arbitrary value
of f

*
we must minimize this result with respect tof

*
[30].

This should be performed separately above and below a new
critical separationR*8,

f* = 0, R. R*8,

f* = cos−1F a1

4a2
expS−

3lh

4lp
DG, R, R*8. s2.10d

There is a striking resemblance of these results to those of
Ref. [24] for the average interaction energy between two
nonhomologous DNA molecules, which uses a variational

FIG. 2. The Feynman rules. ExpandingEffg [cf. Eq. (2.5)],
eachwn term, for n.2, may be represented by a diagram(or ver-
tex). For instance the vertices in(a), (b), and (c) represent the co-
efficients that sit in front of thew3, w4, andw6 terms, respectively,
in Effg. The straight line in(d) represents the “bare” correlation
functionG0szi −zjd (see the text). Each Feynman graph is then con-
structed from vertices and straight lines. For each vertex positioned
at a pointk, there must be an integration overzk. There is also a
symmetry factor which accounts for how many ways a term(graph)
in the expansion may be generated. As an example we show one
Feynman graph in(e). It contains one integration overzk, three
Gaussian correlation functionsG0szi −zkd, G0szk−zkd, and
G0szk−zjd (see the text), the coefficient that sits in front of thew3

term, and a symmetry factor. An analytical expression for(e) can be
found in Appendix B of Ref.[26].
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approach, iflp is simply replaced by the helical coherence
length lc [14]. This might be due just to the mere fact that
both the patterns of twist angle mismatch between nonho-
mologous DNA and thermal fluctuations are random. In Sec.
IV, where we consider the case of nonhomologous DNA, we
shall exploit this similarity to arrive at an approximation
which combines both effects.

Similar to the results of Ref.[24], the Hartree result gives
a first order transition atR*8: a discontinuity inf* , the “order
parameter” in this context. It appears thatR*8,R* , i.e., the
“phase transition” in the Hartree approximation occurs at
smaller separation than in the ground state.

In this section we shall defer from plotting the Hartree
results for the free energy andf* . We leave this to the next
section where we present the exact solution of the problem
with which we compare the Hartree results.

III. “QM” FORMULATION FOR IDENTICAL DNA:
EXACT RESULTS

A. The quantum mechanical analogy

Instead of calculating the path integral Eq.(2.3), we re-
formulate the problem into a quantum mechanical(QM) one
[31] that describes a particle with a momentumpf in a pe-
riodic potential. This not only provides an exact numerical
solution for free energy but also gives a framework for a
physical interpretation of results.

In dimensionless units this potential has the form

Vsfd = −
lp

2

l0
2cossfd +

a2lp
2

a1l0
2coss2fd, s3.1d

wherel0
2=C/ s2a1d.

Our first step is to rewrite the integral as

Z ~E E DpfDf exp iE
−t̃

t̃

dt„pfstdf8std − Hfpfstd,f8stdg…,

s3.2d

where H[pffstd] =(pfstd)2/2−V[fstd] and L / s2lpd= it̃.
Here, we have performed aWick rotation(z→ it) into a time-
like variablet [29]. Following Feynman’s path integral for-
mulation of quantum mechanics[32] one deduces that the
free energy, for the fixed end boundary conditionsfs−it̃d
=f− andfsit̃d=f+, is (cf. Appendix C of Ref.[26])

F = a0L − kBT lno
E

kf+uElexpS−
EL

lp
DkEuf−l − kBT ln Q.

s3.3d

The energy eigenvalues are then determined by the
Schrödinger equation

−
1

2

d2csfd
df2 + Vsfdcsfd = Ecsfd. s3.4d

If we take length of the helices to be very long, we may
further simplify the free energy

F = a0L −
E0CL

2lp
2 − kBT ln Q, s3.5d

whereE0 is the ground state energy. One may also show that
for a system of infinite length the thermal average of an
observable depending onfszd is the same as its QM average.
In Appendix D of Ref.[26] we show that this principle for
thermal averaging[as well as Eq.(3.5)] remains valid for
molecules with a finite length of juxtaposition ifL /l@1 for
the Gaussian approximation, andL /lh@1 for the Hartree
approximation. So, in this limit, we should interpret the
probability densityucsfdu2 of the ground state as the “physi-
cal” probability distribution off at a given temperature.

Before solving Eq.(3.4) let us discuss what we expect to
get. It is useful, first, to present a schematic drawing of both
the potential and the probability density(Fig. 5). We can see
from Eq. (3.1) that lp controls the height of the potential
barrier; as we reducelp the barrier diminishes. This in-
creases the amount of tunneling between minima, thereby
causing the probability density to become flatter. In the ex-
treme limit of high temperatures the probability density is the
same everywhere. In other words, at these temperatures,
fluctuations inf are so large that the angular dependence of
wint is effectively washed out.

As we increasea2, when we enter the regimeR,R* , the
potential splits into two minima, centered at −f0 andf0. If
we increasea2 further, we find thatucsfdu2 will develop two
peaks as seen in Fig. 5. This occurs below a separation which
we define asR*9. Importantly, we expect the mean “quantum
average”kfl (thermal average along the whole molecule) to
be zero for all values ofa1 anda2.

Now for R.R*9, even whenl /lp!1, there is an equal
probability, as we go along the molecule, off being any
integer of 2p. This might be due to a very dilute gas of
thermally excited solitons along the juxtaposing duplexes
[25]. Whereas, forT=0 we expectfszd=0 at largeR. Each
soliton corresponds to a kink in the anglef from 2pn to
2psn+1d or in the opposite direction, from 2pn to 2psn

FIG. 3. Diagrammatic expansion for the full correlation function
Gsz−z8d in Hartree approximation.

FIG. 4. Diagrammatic expansion for the free energy. Here,F0 is
the free energy calculated in the Gaussian approximation.
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−1d. At T=0, each soliton is a nontrivial solution of the Euler
equation which is obtained by minimizingEff0g with re-
spect tof0; each havingDE,1/l more energy than the
trivial solution. The probability of finding at least one soliton
of “length” l can be estimated as

Ps , expS−
DE

kBT
D . s3.6d

At least for infinitely long molecules there are always some
solitons present. However, there are too few solitons at
l /lp!1 to give any substantial contribution to the free en-
ergy.

WhenR,R*9, there is another type of soliton correspond-
ing to a twist in the angle from −f0 to f0 or in the opposite
direction. Forl /lp!1, we expect a small thermally excited
density of this type of solitons, and this causeskfl to bezero
for all separations. A rough estimate of the density of solitons
should be the amount of QM tunnelling through potential
barriers, Eq.(3.1).

B. Limiting cases

For our confidence, let us check the limiting cases. We
first considerl /lp!1, where we must recover the Gaussian
result. In the “QM” picture, this regime corresponds to a
large magnitude of the potential. Here, we expectcsfd to be
localized; forR.R* , aroundf0=0, and forR,R* around
±f0. Therefore, we should Taylor-expand indf=f±f0
around these respective values. At small values ofdf, one
readily obtains the Schrödinger equation for a simple har-
monic oscillators"=1d

−
1

2

d2c̃sdfd
dsdfd2 −

v2df2

2
c̃sdfd = Ẽc̃sdfd. s3.7d

Here v2=slp
2/l0

2dcosf0−s4a1lp
2/a2l0

2dcos 2f0, and Ẽ=E
+slp

2/l0
2dcossf0d−sa1lp

2/a2l0
2dcoss2f0d. The ground state

energy is of courseE0=v /2 and the wave function takes the
form

c̃sdfd = c0 expS−
vsf0 + dfd2

2
D , s3.8d

wherec0 is the normalization factor. Then using the formula
given in Eq.(3.5) it is easy to recover Eq.(2.7).

What is the place of the Hartree approximation in the
“QM” reformulation? It is equivalent to a variational prin-
ciple for the free energy where now Eq.(3.8) is its trial
function andv a variational parameter. Nowdf=f±f* , and
f* is treated as a variational parameter as well. By comput-

ing kẼuĤuẼl and settingv=lp/l it is not hard to recover the
Hartree result(2.9).

In one detail, however, the Hartree and Gaussian approxi-
mations are incorrect(even whenl /lp!1); namely, in the
value of kfl. In the Gaussian approximation we find that
kfl= ±f0, and in the Hartree approximationkfl= ±f* ,
whereas in fact it should be zero. This is due to bothGauss-
ian and Hartree approximations not containing solitons[33].
To remedy this, we should treat the ground state wave func-
tion as a superposition of Gaussian wave functions, each
centered about minima in the potentialVsfd whenl /lp!1:

csfd . lim
N→`

c0

ÎNp
o

n=−Np/2

Np/2

exp„− vsf − 2pnd2
…, R. R* ,

s3.9d

csfd . lim
N→`

c0

Î2Np
o

n=−Np/2

Np/2

fexp„− vsf − 2pn − f0d2
…

+ exp„− vsf − 2pn + f0d2
…g, R, R

*
.

If the degree of overlap between the Gaussian wave func-
tions is small, i.e., the number of solitons is negligible which
is true when l /lp!1 for R.R* and l / slpf0d!1 for
R,R* , then by using Eq.(3.5) we are able to show again
that the Gaussian result(2.7), is essentially correct. By simi-
lar reasoning, we may show that the Hartree result(2.9), is
recovered by applying the variational principle to QM for-
mulation.

FIG. 5. Schematic drawing showing howVsfd and ucsfdu2 vary with respect tolp anda2.
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Now, for the wave functions given in Eq.(3.9) we find
kfl=0 for all R, in accordance with our previous discussion.
Thereby, the analysis of the limiting cases is mathematically
consistent with the QM picture.

C. Exact solution: Comparison with approximate results

To solve Eq.(3.4) exactly for the ground state, utilizing
that the ground state wave function is periodic, we write

csfd = o
n

An exps− infd. s3.10d

Equation(3.4) then reduces to an infinite system of algebraic
equations given by

Fn2

2
− E0GAn −

lp
2

2l0
2fAn−1 + An+1g +

a1lp
2

2a2l0
2fAn−2 + An+2g = 0.

s3.11d

We then solve Eq.(3.11) numerically forE0 andAn subject to
normalization of the wave function. The relevant quantities
resulting from this calculation are shown in Figs. 6–8.

In Fig. 6 the free energy—the exact calculation and the
Hartree approximation—are compared. The general trend is
that it increases with temperature. We see that agreement
between the two is quite good, above and belowR*9, for the
temperatures plotted. There is, however, a small discrepancy
nearR*9, where the Hartree approximation is less accurate.

In Fig. 7 we comparef* R*8 calculated in the Hartree
approximation withfmax, the angle of the maximum prob-
ability density in one period, andR*9 the critical interaxial
separation from the exact solution. Again, we find that agree-
ment is good except near the “phase transition.” Here, the
exact calculation gives no discontinuity atR*9, unlike the Har-
tree approximation.

In Fig. 8 we comparekf2l, the measure of fluctuations as
a function of separation in the Hartree approximation with
the exact calculation. Here, again, there is good agreement
away fromR*8. NearR*8, as expected, the Hartree approxima-
tion breaks down. However, the exact calculation has a cusp
in kf2l at R*8. So there might besome kind of phase transi-
tion going on, albeit not a conventional one.

IV. EXTENSION OF THE HARTREE APPROXIMATION
FOR NONHOMOLOGOUS PAIRS

Now let us consider two DNA molecules with different
base pair sequences. Following Ref.[14] we write the tor-
sional energy in a continuum approximation as

wtorsf8,dVd =
C

4
Sdf

dz
−

dVszd
h

D2

. s4.1d

dVszd=V1szd−V2szd is a random field that corresponds to
the preferred value of the derivative off when there is no
interaction. Here,V1szd and V2szd correspond to the pre-
ferred values of the derivatives off1 and f2, respectively.

FIG. 6. Free energy per base pair for the Hartree(dotted line)
and QM(solid line) formulations atT=300 K as a function of sepa-
ration,R. The electrostatic coefficients, which vary withR, used for
this plot are for helices with 90% counterion neutralization and a
30%/70% distribution of these ions between the minor and major
grooves[14]. The torsional modulus is given the experimental value
of C=3.0310−19 erg cm.(These values will be used throughout the
paper.) As we see, the Hartree value for the free energy deviates
from the one calculated within the QM formulation only near the
transition(around 24–25 Å for both temperatures).

FIG. 7. Approximate and exact solutions for the azimuthal angle
as a function of separation.f* (dotted line) andfmax (solid line) are
shown for the Hartree and QM formulations, respectively. Whereas
the Hartree formulation predicts a first order transition in the opti-
mum phase angle, the most probable phase angle from the QM
formulation continuously decreases to zero asR increases.

FIG. 8. Mean square amplitude of phase angle fluctuations for
the Hartree case(dotted line) and for the QM formulation(solid
line). The Hartree case shows a first order transition whereas there
is no discontinuity for the QM formulation.
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Both V1szd andV2szd are sequence dependent. Therefore, a
particular nonzero value ofdVszd corresponds to different
sequences along each double helix. For a detailed discussion
and a derivation of Eq.(4.1), the reader is referred to Ref.
[24]. As in Ref. [24], we assume that the statistical distribu-
tion of dVszd is Gaussian withdVszddVsz8d=2DV2hdsz
−z8d (throughout, we use a bar to denote ensemble averaging
so as not to confuse with thermal averaging).

Our aim will be to calculate the ensemble-averaged free

energyF̄. The main problem is how to include a random field
in Eq. (2.3). Indeed,f* will now depend on bothz and
dVszd. In the Gaussian approximation we may takef*

=f0fVg wheref0fVg satisfies the saddle point equation[14]

d2f0

dz2 −
1

l0
2sinsf0dS1 −

4a2

a1
cossf0dD =

1

h

ddV

dz
, s4.2d

the solutions of which are discussed in Refs.[24,25]. To
calculate the free energy in both the Gaussian approximation
and perturbation theory without further approximation is a
difficult task. Essentially, one has to solve this equation and
then calculate the correlation function for Gaussian approxi-
mations around this mean field, before even being able to
perform perturbation theory.

At this point, it is worth mentioning why we have been
unable to find a QM formulation for nonhomologous pairs.
When one tries to reformulate the problem as a path integral
overf0fVg (as well as overw), the integrand is not of closed
form and is inherently nonlocal. This makes it impossible to
write this path integral in the form of Eq.(3.2); therefore no
“QM” approach can be formulated whenDVÞ0.

A way of calculatingF̄ is to introduce field replicas, usu-
ally employed in the field theoretical literature when han-
dling a random field[34,35]. But, it is easier to employ the
following approximation instead. The key step will be to
replacewtor, sin f* , sin 2f* , cosf* , and cos 2f* by their
ensemble averages, so that

F̄ < − kBT ln E Df expS−
Eapproxfwg

kBT
D , s4.3d

where

Eapproxfwg =E
−L/2

L/2

dz„wapproxsR,wd + w̄torsw8 + f*8fdVg,dVd…

and

wapprox„R,wszd… = o
n=0

`
s− 1dnfa1 sinsf*dw2n+1 − a2 sins2f*ds2wd2n+1g

s2n + 1d!
−o

n=0

`
s− 1dnfa1 cossf*dw2n − a2 coss2f*ds2wd2ng

s2nd!
.

One can see thatwapprox(R,wszd) is simply the form given for
wint in Eq. (2.5), but with all the quantities that depend onf*
replaced by their ensemble averages; varying them so as to

minimize F̄. Now, things are a lot easier if the helices are
assumed to be very long, as these ensemble averages will not
depend onz. We can now use the Hartree approximation to
obtain

F = LXa0 − a1 cossf*dexpS−
lh

4lp
D + a2 coss2f*dexpS−

lh

lp
D

+
C

4
F 1

2lhlp
+ Sdf*

dz
−

dV

h
D2GC − kBT ln Q. s4.4d

All that is left is to compute the averages, using the same
type of trial function as given in Ref.[24]

f*szd = f̄* −
lh

2h
E

−`

`

dz8
ddV

dz8
expS−

ux − x8u
lh

D . s4.5d

An important difference is that the trial function is forf* ,

not for f0, and lh will be chosen to minimizeF̄ at finite

temperature, instead ofĒ at zero temperature. Then using the

results of Ref.[24] we are able to recastF̄ in the form

F̄ = LFa0 − a1 cossf̄*dexpS−
lh

4ls
D + a2 coss2f̄*d

3expS−
lh

ls
D +

C

8lhls
G − kBT ln Q, s4.6d

where we have introduced an effective coherence lengthls

1

ls
=

1

lc
+

1

lp
, s4.7d

with lc=h/DV2, the helical coherence length in the ground
state[14] discussed in the Introduction. This should be valid
when lh/ls,1. Then minimizing Eq.(4.6) with respect to
lh and f̄* we recover Eqs.(2.8) and (2.10), but with lp
replaced byls.

V. SPIN-SPRING MODEL: MONTE CARLO SIMULATIONS

In order to test the results of the Hartree approximation
for both homologous and nohomologous pairs we have de-
veloped a discrete computational model. Performing Monte
Carlo simulations for this model we have been able to deter-
mine over what range of parameters we may use Eqs.(4.6)
and (4.7). These simulations also provide an additional test
of the QM results.
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A. Discrete model

In previous work[25], numerical simulations were carried
out to find the ground state energies of interacting DNA du-
plexes and to discover how nonlinear effects observed in
their torsional readjustment influence the interaction. To in-
corporate temperature, we have developed a discrete spin
model of interacting base pairs. This discrete model yields
results for the ground states identical to those obtained in the
continuum model used in Ref.[25].

In the discrete model each duplex is treated as a series of
disks where the spin variable corresponds to the azimuthal
orientation of a disk at sitei. Each disk or spin represents an
individual base pair in the duplex and is coupled to its neigh-
boring disks in the same DNA duplex by torsional springs
with the experimentally determined force constantC. For
perfectly rigid helices, the phase angle difference between
neighboring disks,f1i −f1si−1d, is determined by the prefer-
ential twist angle,V1i, between the base pairs. ForB-DNA
this preferential twist angle has an average value of 34° with
a sequence-dependent variationDV=4° –6° [19–21]. Any
deviation of the phase angle difference from the correspond-
ing preferential twist angle difference yields an increase in
the torsional energy of the duplex. Each disk also interacts
electrostatically with the disk adjacent to it in the second
DNA duplex. This electrostatic interaction between them de-
pends on their relative azimuthal angle,fi =f1i −f2i, and the
interaxial separation,R. This configuration is sketched in
Fig. 9.

The total energy is then simply a discretized form of Eqs.
(2.1) and (4.1)

E = hFo
i=1

N

fa0 − a1 cossfid + a2 coss2fidg

+
C

4h2o
i=2

N

fsfi − fi−1d − dVig2G , s5.1d

whereh is the helical rise per base pairs<3.4 Åd, N is the
total number of base pairs(disks), anddVi is the difference

in the preferential twist angles at sitei between duplexes 1
and 2.

B. Finite temperature Monte Carlo simulations

The ground state energy can then be determined by mini-
mizing Eq. (5.1). To do this, we employed a simple finite
temperature Monte Carlo routine in which a spin is randomly
chosen and perturbed by a small angle. The perturbation is
dynamically altered during the routine so that half of the
Monte Carlo moves are accepted.

The inclusion of temperature into the model is thus a
simple task. However, we were required to modify our origi-
nal Metropolis[36] algorithm in order to build up a canoni-
cal distribution of the spin configurations. For a given Monte
Carlo move, the change in the electrostatic energy tends to
be dominated by the change in the torsional energy, thus
biasing the sampling. In our modified algorithm, we would
first address only the change in the electrostatic energy for a
given move to determine if it was accepted. Afterwards, the
combined change in the torsional and electrostatic energy,
dE, for the move was compared against the Boltzmann factor
exps−dE/kBTd in the standard Metropolis fashion. This sam-
pling yielded the correct canonical distribution of the con-
figurations at a given temperature so that the thermal average
of the energy is simply the arithmetic average of the energy
of each sampled configuration. In practice, we allow the sys-
tem to thermally equilibrate(at least 104 MC sweeps) and
then begin averaging over subsequent Monte Carlo steps.

We used this model to find the thermal average of the
energy of interacting homologous DNA, wheredV=0, and
of interacting nonhomologous pairs, in which we averaged
over a number of randomly generated sets ofdV. Many
simulations using different numbers of base pairs were car-
ried out to take into consideration end effects, i.e., we as-
sumed the ends of the DNA to be free to twist rather than
being fixed. We found that as long as fifty base pairs or more
were used, the energy per base pair was independent of the
length of the duplexes. For both homologous and nonho-
mologous pairs, we also averaged over many different initial
spin configurations as to remove any bias from our sampling.

To compare the calculated energy from the previous sec-
tions with that found from the numerical simulations, we
subtract the energy determined at each interaxial separation
by the energy found at a large separation to eliminate the ill
definedQ term. As shown in Fig. 10, the results of these
simulations are in excellent agreement with the free energy
found from the Hartree calculations. Along with the criteria
outlined in Appendix D of Ref.[26], this implies that the
Hartree and QM formulations are good descriptions of the
interaction.

VI. CONCLUSION

In all the problems of biological importance, DNA oper-
ates at physiological temperatures and hence it is important
to understand how thermal fluctuations will affect the DNA-
DNA interaction. This article provides this understanding.

We have extended the theory of electrostatic interactions
between DNA from the ground state to account for thermal

FIG. 9. “Discrete spin model” of two interacting DNA duplexes.
Each spin represents an individual base pair which is coupled to its
neighboring base pairs along the same duplex by a spring with a
torsional elasticity modulusC. Each spin also interacts electrostati-
cally with the spin adjacent to it in the other duplex.
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fluctuations. We have developed three levels of description:
path integral formulations on the level of Gaussian and Har-
tree approximations, a quasi “QM” formulation giving us an
exact solution for the interaction of homologous DNA[37],
and finite temperature Monte Carlo simulations of a spin-
spring model which permitted verification of the exact and
approximate solutions.

We have shown that a heuristic, ground state variational
solution of Ref. 24 is reproduced by the Hartree self-
consistent field approximation, where temperature plays the
role of nonhomology. Subsequently, we have extended our
approximations to embrace both the nonhomology and ther-
mal effects in the interaction.

The Hartree approximation predicts a first order transition
close to the ground state frustration point instead of a weaker
transition given by the exact solution. This discrepancy is
less noticeable for nonhomologous DNA. The Hartree ap-
proximation thus seems to be a reasonable tool for the de-
scription of torsionally flexible DNA.

There are also two “practical” lessons from this study.
First, as shown in Fig. 6, thermally induced torsional fluc-
tuations increase the energy of interaction of DNA duplexes
relative to the ground state by roughly 0.03kBT per base pair
(,4kBT per persistence length), but they do not remove the
attraction minimum. Second, recognition between homolo-
gous and nonhomologous duplexes via the difference in elec-
trostatic attraction[14] remains possible. Figure 10 gives
typical energy differences from 1.6kBT to 6kBT per persis-
tence length, which could cause recognition.

It should be recalled that in this work the counter ions
have been assumed to be irreversibly adsorbed and immobile
on the DNA surface. There were a number of theoretical
works exploring the opposite limiting cases when all the
counterions are floating around DNA or rearranging on the
surfaces subject to DNA-DNA interactions[38,39]. Thus our

work is limited to strong chemisorption of counterions, not
untypical for many DNA condensers.

The parameters of the effective Hamiltonian(2.3) are
temperature dependent. Indeed, the electrostatic coefficients
describing the pair interaction,a0, a1, anda2 depend on tem-
perature through the dielectric constant of the solvent and the
Debye screening length, whereas the torsional elasticity
modulus decreases dramatically approaching the DNA melt-
ing point. The degrees of freedom that control temperature
dependence of these parameters are much faster than DNA
torsional fluctuations, so that we are not obliged to consider
both on the same footing. But in the calculation of thermo-
dynamic properties of DNA assemblies this additional and
equally important source of temperature dependence must be
parametrically taken into account. And with these findings
concerning the pair interaction it will be possible to start
investigating the statistical thermodynamics of columnar as-
semblies. This will be a rich object for theoretical studies due
to the unique properties of the pair potential. What is also
interesting is that by the above discussed spin-analogies, the
problem could be mapped onto unexplored models of exotic
magnetic systems, an area of possible theoretical interest.
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APPENDIX: THE ELECTROSTATIC COEFFICIENTS

The coefficients derived in Ref.[3] have the form

a0 =
8p2s2

«
Hs1 − u2dK0skRd

k2fK1skrdg2

− o
n,j=−`

`
ffsn,udg2

kn
2 F fKn−jsknRdg2I j8sknrd

fKn8sknrdg2Kj8sknrd GJ , sA1d

an=1,2=
16p2s2

«

ffsn,udg2

kn
2

K0sknRd
fKn8sknrdg2 , sA2d

where

fsn,ud = e−p2n2w2/2H2
ff1u + f2s− 1dnu − s1 − f3udcossnf̃sdg

sA3d

FIG. 10. The free energy per base pair for the ground state of
homologous sequences(solid line) and for the Hartree calculation at
T=300 K for homologous(dotted line) and nonhomologous se-
quences(dot-dashed line). Numerical results of the discrete spin
model for homologous sequences atT=300 K are shown as filled
circles. For nonhomologous sequences(open squares), the data
points were found by averaging over many different realizations of
the random fielddV. The error bars(not shown for clarity’s sake) of
the numerical simulations are found from averaging over many ini-
tial configurations for the homologous case and averaging over dif-
ferent realizations of the random field for nonhomologous cases.
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and

kn =Îk2 + n2F2p

H
G2

. sA4d

Insxd, Knsxd, In8sxd, andKn8sxd are the modified Bessel func-
tions and their derivatives, respectively.R, again, is the in-
teraxial spacing between two parallel helices andr is the
radius of the cylindrical surface formed by the centers of the
phosphates.s s<16.8mC/cm2d is the surface charge density

of the phosphates.u is the fraction of phosphate charge neu-
tralized by bound counterions.f i are the fractions of counte-
rions bound in the minor groovesf1d, the major groovesf2d,
and on the phosphate strandssf3d so thatf1+ f2+ f3=1. f̃s (
<0.4p for B-DNA) is the azimuthal half-width of the minor
groove.w s<5 Åd is the width of the charge density distri-
bution across each phosphate strand or groove.« s<80d is
the dielectric constant of water. And, finally,k−1 (<7 Å in
physiological solution) is the Debye screening length.
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